
Honeyd: A Virtual Honeypot Daemon

(Extended Abstract)

Niels Provos
Center for Information Technology Integration

University of Michigan
provos@citi.umich.edu

Abstract

Honeypots are closely monitored network decoys
serving several purposes: they can distract adversaries
from more valuable machines on a network, they can
provide early warning about new attack and exploita-
tion trends and they allow in-depth examination of
adversaries during and after exploitation of a honey-
pot. Deploying physical honeypots is often time inten-
sive and expensive as different operating systems re-
quire specialized hardware and every honeypot requires
its own physical system. This paper presents Honeyd, a
framework for virtual honeypots, that simulates virtual
computer systems at the network level. The simulated
computer systems appear to run on unallocated network
addresses. To fool network fingerprinting tools, Hon-
eyd simulates the networking stack of different operat-
ing systems and can provide arbitrary services for an
arbitrary number of virtual systems. Furthermore, the
system supports virtual routing topologies that allow the
creation of large virtual networks including characteris-
tics like latency and packet loss. We discuss Honeyd’s
design and implementation.

1 Introduction

Computer security is increasing in importance as
more business is conducted over the Internet. Despite
decades of research and experience, we are still unable
to make secure computer systems or even measure their
security.

As a result, exploitation of newly discovered vul-
nerabilities often catches us by surprise. Due to ex-
ploit automation and massive global scanning for vul-
nerabilities, adversaries are often able to compromise
computer systems shortly after vulnerabilities become
known [8].

One way of getting early warning of new vulnerabil-
ities is to install computer systems on a network that

we expect to be broken into. These systems have no
other legitimate function and every attempt to connect
to them is suspect. We call such a system a honeypot.
It may run any operating system and any number of
services. The configured services determine the venues
an adversary may choose to compromise the system.
A high-interaction honeypot simulates all aspects of
an operating system, whereas a low-interaction honey-
pots simulates only some parts, for example the net-
work stack [7]. We also differentiate between physical
and virtual honeypots. A physical honeypot exists as
a machine with a corresponding IP address on the net-
work whereas a virtual honeypot is hosted on another
machine that responds to network traffic directed to
the virtual honeypot.

Virtual honeypots are attractive because they do
not require additional computer systems. Using vir-
tual honeypots, it is possible to populate a network
with hosts running a variety of different operating sys-
tems. However, to convince adversaries that a virtual
honeypot is running a certain operating system, it is
necessary to simulate the TCP/IP stack of the target
operating system carefully. In other words, we need to
be able to fool TCP/IP stack fingerprinting tools like
Xprobe [1] or Nmap [4].

This paper provides a brief overview of the design
and implementation of Honeyd, a daemon that simu-
lates the TCP/IP stack of operating systems to cre-
ate virtual honeypots. Honeyd supports TCP, UDP
and ICMP. It listens to network requests destined for
its configured virtual honeypots. Honeyd responds ac-
cording to the services that run on the virtual honey-
pot. Before sending a response packet to the network,
the packet is modified by Honeyd’s personality engine
to match the network behavior of the configured oper-
ating system personality.

To simulate more realistic networks, Honeyd sup-
ports the creation of virtual network topologies. The
networks can be configured to contain routers with con-

figurable link characteristics like latency and packet
loss. When using tools like traceroute, the network
traffic appears to follow the configured topology.

We present an experimental evaluation of Honeyd
that shows how fingerprinting tools like Nmap detect
the configured operating system and services. Fur-
thermore, we evaluate the support of virtual network
topologies with tools like traceroute.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the design and implementation of Hon-
eyd. In Section 3, we evaluate the implementation and
show that Honeyd fools fingerprinting tools in practice.
We present related work in Section 4. We conclude in
Section 5.

2 Design and Implementation

In this section, we discuss the design and implemen-
tation of Honeyd. We discuss our intended goals and
show how they were implemented.

We expect adversaries to interact with our honey-
pots only at the network level. Instead of simulating
every aspect of an operating system, we decided to sim-
ulate only its network stack. The main drawback of
this approach is that an adversary never gains access
to a complete system even if he compromises a sim-
ulated service. On the other hand, we are still able
to capture connection and compromise attempts. For
that reason, Honeyd is a low-interaction virtual honey-
pot that simulates TCP and UDP services.

Honeyd must be able to handle virtual honeypots
on multiple IP addresses simultaneously. This allows
us to populate the network with a number of virtual
honeypots that can simulate different operating sys-
tems and services. Furthermore, Honeyd must be able
to simulate different network topologies.

Honeyd is implemented as a Unix daemon that runs
on a workstation and listens to network traffic; see Fig-
ure 1. Before we give an overview of the Honeyd ar-
chitecture, we explain how network packets for virtual
honeypots reach the Honeyd host.

2.1 Receiving Network Data

Honeyd is designed to reply to network packets that
have the destination IP address of one of the honeypots
that it simulates. We need to configure the network ap-
propriately for Honeyd to actually receive such packets.
To do this, we either create a special route at the router
for the virtual IP addresses or use Proxy ARP [3].

In the following, we assume that A is the IP address
of our router and that B is the IP address of the Hon-
eyd host. The IP addresses of virtual honeypots need

InternetRouter

Honeyd

Virtual Honeypots

Linux 1.0.9 FreeBSD 3.2 - 4.0 Windows NT 4 NetBSD 1.6H

10.0.0.1

10.0.0.2

10.0.0.101 10.0.0.102 10.0.0.103 10.0.0.104

Figure 1: Honeyd receives traffic for its virtual honeypots
via a router or Proxy ARP. For each honeypot, Honeyd
can simulate the network stack behavior of a different
operating system.

to fall within our local network. We designate them
V1, . . . , Vn. When an adversary sends a packet from
the Internet to honeypot Vi, router A receives it first
and attempts to forward it. The router queries its rout-
ing table to find the forwarding address for Vi. There
are three possible results: the router drops the packet
because there is no route to Vi, router A forwards the
packet to another router, or Vi falls in local network
range of the router and thus is directly reachable by A.

We make use of the latter two cases to direct traffic
for Vi to B. The easiest way is to configure routing
entries for Vi with 1 ≤ i ≤ n that point to B. In that
case, the router forwards packets for our virtual hon-
eypots directly to the Honeyd host. If no special route
has been configured, the router uses ARP to determine
the MAC address of the virtual honeypot. As there is
no corresponding physical machine, the ARP requests
remain unanswered and the router drops the packet af-
ter a few retries. We configure the Honeyd host to reply
to ARP requests for Vi with its own MAC addresses.
This is called Proxy ARP and allows the router to send
packets for Vi to B’s MAC address.

2.2 Honeyd Architecture

In this section, we give an overview of Honeyd’s ar-
chitecture; see Figure 2.

When the Honeyd daemon receives a packet for one
of the virtual honeypots, it is processed by a central
packet dispatcher. The dispatcher checks the length of
the IP packet and verifies its checksum. The daemon
knows only three protocols: ICMP, TCP and UDP [9].
Packets for other protocols are discarded.

The dispatcher queries the configuration database
for a honeypot configuration that corresponds to the
destination IP address. If no such configuration ex-
ists, the default template is used. Then the dispatcher
calls the protocol specific handler with the received
packet and the corresponding honeypot configuration.
For ICMP, the only packet that is currently supported
is the ICMP ECHO request. The daemon answers with
an ICMP ECHO reply packet.

For TCP and UDP, the daemon can establish con-
nections to arbitrary services. Services are external
programs that receive data on stdin and send their out-
put to stdout. When a connection request is received,
the daemon checks if the packet is part of an estab-
lished connection. In that case, any new data is sent
to the already started service program. If the packet
contains a connection request, a new process is created
to run the appropriate service.

Honeyd contains a simplified TCP state machine,
i.e the three-way handshake for connection establish-
ment and connection teardown via FIN or RST are fully
supported. However, receiver and congestion window
management is not fully implemented.

An UDP packet to a closed port is correctly an-
swered with an ICMP port unreachable message. This
allows tools like traceroute to work correctly.

Instead of establishing a connection with a service
program, the daemon also supports dynamic redirec-
tion of the service. This allows us to forward a con-
nection request for a web server running on a virtual
honeypot to a real web server. It is also possible to
redirect connections to the adversary herself, e.g. a
redirected SSH connection might cause an adversary
to attempt to compromise her own SSH server.

Before any packet is sent to the network, it is pro-
cessed by the personality engine. It adjusts the packet’s
content so that it seems to originate from the net-
work stack of the configured operating system; see Sec-
tion 2.4 for more details.

2.3 Routing Topology

Instead of simulating a flat network, Honeyd also
supports virtual routing topologies. We can no longer
use Proxy ARP for the packets to reach the Honeyd
host, but need to configure a router to delegate a net-
work range to our host. This network range can be
split into sub-networks. Currently, the virtual routing
topology is restricted to a rooted tree. The root of
the tree is the point at which packets enter the virtual
routing topology.

Each non-terminal node of the tree represents a
router and each edge a link that contains latency and
packet loss as attributes. Each terminal node of the

Network

Packet Dispatcher

ICMP TCP UDP

Lookup

Configuration

Personality
Personality

Engine

Services

Figure 2: This diagram gives an overview of Honeyd’s
architecture. Incoming packets are dispatched to the cor-
rect protocol handler. For TCP and UDP, the configured
services receive new data and send responses if neces-
sary. All outgoing packets are modified by the personality
engine to mimic the behavior of the configured network
stack.

tree corresponds to a network.
When the daemon receives a packet, it traverses the

tree starting at the root until it finds a node that con-
tains the destination IP address of the packet. The
packet loss and latency of all edges on the path is ac-
cumulated and determines if the packet is dropped and
for how long its delivery should be delayed.

The daemon also decrements the time to live (TTL)
of the packet for each traversed router. If the TTL
reaches zero, the daemon sends an ICMP time exceeded
message with the source IP address of the router that
causes the TTL to reach zero.

2.4 Personality Engine

Honeyd uses the term personality to refer to the net-
work stack behavior of a virtual honeypot. The dae-
mon uses the Nmap fingerprint list as a reference. Each
fingerprint has a format similar to the following exam-
ple:

Fingerprint IRIX 6.5.15m on SGI O2

TSeq(Class=TD%gcd=<104%SI=<1AE%IPID=I%TS=2HZ)

T1(DF=N%W=EF2A%ACK=S++%Flags=AS%Ops=MNWNNTNNM)

T2(Resp=Y%DF=N%W=0%ACK=S%Flags=AR%Ops=)

T3(Resp=Y%DF=N%W=EF2A%ACK=O%Flags=A%Ops=NNT)

T4(DF=N%W=0%ACK=O%Flags=R%Ops=)

T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)

T6(DF=N%W=0%ACK=O%Flags=R%Ops=)

T7(DF=N%W=0%ACK=S%Flags=AR%Ops=)

PU(Resp=N)

We use the string after the Fingerprint token as the
personality name. The lines after the name describe
test results for nine different tests. The first test is
the most comprehensive. It determines how the net-
work stack of the remote operating system creates the
initial sequence number (ISN) for TCP SYN segments.
Nmap indicates the difficulty of predicting ISNs in the
Class field. Predictable ISNs are a long known secu-
rity problem because they allow an adversary to spoof
connections [2]. The gcd and SI field provide more
detailed information about the ISN distribution. The
first test also determines how IP identification numbers
and TCP timestamps are generated.

The next seven tests determine the stack’s behavior
for packets that arrive on open and closed TCP ports.
The last test analyzes the ICMP response packet to a
closed UDP port.

Honeyd keeps state for each honeypot. This includes
information about ISN generation, the boot time of the
honeypot and the current IP identification number.

Before a packet is sent to the network, it passes
through the personality engine.

For ICMP packets, the protocol part of the packet
is currently changed only if it is of type destination un-
reachable and code port unreachable; see Figure 3. The
daemon looks up the PU test entry for the personal-
ity to determine how the quoted IP header needs to
be modified. Many operating systems modify the in-
coming packet by changing fields from network to host
order and as a result quote the IP and UDP header in-
correctly. Honeyd introduces these errors if necessary.

type(3) code(3)
destination

unreachable
port

unreachable

checksum

unused (set to 0)

IP header (including options) +
first 8 bytes of UDP header

0 7 8 15 16 31

Figure 3: The diagram shows the structure of an ICMP
port unreachable message. Honeyd introduces errors into
the quoted IP header to match the behavior of network
stacks.

Nmap’s fingerprinting is mostly concerned with the
operating system’s TCP implementation. TCP is a
stateful connection-oriented protocol that provides er-
ror recovery and congestion control [5]. It also sup-
ports additional options that are not implemented by
all systems. The size of the advertised receiver win-
dows varies between implementations and is used by
Nmap as part of the fingerprint.

0 7 8 15 16 31

16-bit source port number16-bit destination port number

32-bit sequence number

32-bit acknowledgment number

4-bit
header
length

reserved
(6 bits)

flags
(6 bits) 16-bit window size

16-bit TCP checksum 16-bit urgent pointer

options (if any)

Figure 4: The diagram shows the structure of the TCP
header. Honeyd changes options and other parameters to
match the behavior of network stacks.

When the daemon sends a packet for a not yet es-
tablished TCP connection, it takes the initial window
size from the Nmap fingerprint. After a connection has
been established, the daemon adjusts the window size
according to the amount of buffered data.

If the fingerprint includes TCP options, Honeyd in-
serts them into a packet as long as they have been
correctly negotiated during connection establishment.
For TCP timestamps, the daemon uses the fingerprint
to determine the frequency with which the timestamp
is updated. For most operating systems, the update
frequency is 2 Hz.

Generating a matching distribution of initial se-
quence numbers is more difficult. Nmap obtains six
ISN samples and analyzes their consecutive differences.
Nmap recognizes several ISN generation types: con-
stant differences, differences that are multiples of a con-
stant, completely random differences, time dependent
and random increments. To differentiate between the
latter two cases, Nmap calculates the greatest common
divisor (gcd) and standard deviation for the collected
differences.

For each honeypot, the daemon keeps track of the
last ISN that was generated and its generation time.
For new TCP connection requests, Honeyd uses a for-
mula that approximates the distribution described by
the fingerprint’s gcd and standard deviation. As a re-
sult, the generated ISNs match the generation class
that Nmap expects for the particular operating system.

For the IP header, Honeyd adjusts the generation
of the identification number. It can either be zero,
increment by one, or random.

route entry 10.0.0.1

route 10.0.0.1 link 10.0.0.0/24

route 10.0.0.1 add net 10.1.0.0/16 10.1.0.1 latency 55ms loss 0.1

route 10.0.0.1 add net 10.2.0.0/16 10.2.0.1 latency 20ms loss 0.1

route 10.1.0.1 link 10.1.0.0/24

route 10.2.0.1 link 10.2.0.0/24

create routerone

set routerone personality "Cisco 7206 running IOS 11.1(24)"

set routerone default tcp action reset

add routerone tcp port 23 "scripts/router-telnet.pl"

create netbsd

set netbsd personality "NetBSD 1.5.2 running on a Commodore Amiga (68040 processor)"

set netbsd default tcp action reset

add netbsd tcp port 22 proxy $ipsrc:22

add netbsd tcp port 80 "sh scripts/web.sh"

bind 10.0.0.1 routerone

bind 10.1.0.2 netbsd

Figure 5: An example configuration for Honeyd. The configuration language is a context-free grammar. This example
creates a virtual routing topology and defines two templates: a router that can be accessed via telnet and a host that
is running a web server.

2.5 Configuration

Virtual honeypots are configured via templates. A
template is a reference for a completely configured com-
puter system. New templates are created with the cre-
ate command.

The set and add commands change the configura-
tion of a template. Using the set command, we as-
sign a personality from the Nmap fingerprint file to a
template. The personality determines the behavior of
the network stack as discussed in Section 2.4. The set
command is also used to define the default behavior
for the supported network protocols. The default be-
havior can be one of the following values: block, reset,
or open. Block means that all packets for the specified
protocol are dropped by default, reset indicates that all
ports are closed by default and open means that they
are all open by default. The latter two settings make
a difference only for UDP and TCP.

Using the add command, we specify the services that
are remotely accessible. Besides the template name,
we need to specify the protocol, port and the com-
mand to execute for each service. Instead of specifying
a service, Honeyd also recognizes the keyword proxy
that allows us to forward network connections to a dif-
ferent host. The daemon expands the following four
variables for both the service and the proxy statement:
$ipsrc, $ipdst, $sport, and $dport. This allows services
to adapt their behavior depending on the particular

network connection they are handling. It is also possi-
ble to redirect network probes back to the host that is
probing us.

The bind command is used to assign a template to an
IP address. If no template has been assigned to an IP
address, the default template is used. Figure 5 shows an
example configuration that specifies a routing topology
and two templates. The router template mimics the
network stack of a Cisco 7206 router and is accessible
only via telnet. Whereas the web server template runs
two services: a simple web server and a forwarder for
SSH connections. In this case, the forwarder redirects
SSH connections back to the connection initiator.

3 Evaluation

This section presents a brief evaluation of Hon-
eyd’s ability to create virtual network topologies and
to mimic different network stacks.

We start Honeyd with a similar configuration to the
one shown in Figure 5 and use traceroute to find the
routing path to a virtual host. We notice that the mea-
sured latency is double the latency that we configured
which is the correct time because packets have to travel
each link twice.

Running Nmap against the two IP addresses
10.0.0.1 and 10.1.0.2 results in the correct iden-
tification of the configured personalities. Nmap states

$ traceroute -n 10.3.0.10

traceroute to 10.3.0.10 (10.3.0.10), 64 hops max

1 10.0.0.1 0.456 ms 0.193 ms 0.93 ms

2 10.2.0.1 46.799 ms 45.541 ms 51.401 ms

3 10.3.0.1 68.293 ms 69.848 ms 69.878 ms

4 10.3.0.10 79.876 ms 79.798 ms 79.926 ms

Figure 6: Using traceroute, we measure a routing path
in the virtual routing topology. The measured latencies
match the configured ones.

that 10.0.0.1 seems to be a Cisco router and that
10.1.0.2 seems to run NetBSD. Xprobe identifies
10.0.0.1 as Cisco router and lists a numer of possible
operating systems including NetBSD for 10.1.0.2. A
more thorough evaluation of Honeyd is the subject of
future work.

4 Related Work

There are several areas of research in TCP/IP stack
fingerprinting, among them: effective methods to de-
termine the remote operating system either by active
probing or by passive analysis of network traffic, and
defeating TCP/IP stack fingerprinting by normalizing
network traffic.

Fyodor’s Nmap uses TCP and UDP probes to deter-
mine the operating system of a host [4]. Nmap collects
the responses of a network stack to different queries and
matches them to a signature database to determine the
operating systems of the queried host. Nmap’s finger-
print database is extensive and we use it as the refer-
ence for operating system personalities in Honeyd.

Instead of actively probing a remote host to deter-
mine its operating systems, it is possible to identify
the remote operating system by passively analyzing its
network packets as done by the passive OS fingerprint-
ing tool P0f [10]. The TCP/IP flags inspected by P0f
are similar to the data collected in Nmap’s fingerprint
database.

On the other hand, Smart et al. show how to de-
feat fingerprinting tools by scrubbing network pack-
ets so that artifacts identifying the remote operating
system are removed [6]. This approach is similar to
Honeyd’s personality engine as both systems change
network packets to influence fingerprinting tools. In
contrast to the fingerprint scrubber that removes iden-
tifiable information, Honeyd changes network packets
in such a way that they contain artifacts of the config-
ured operating system.

5 Conclusion

We presented Honeyd, a framework for creating vir-
tual honeypots. Honeyd mimics the network stack be-
havior of operating systems to fool fingerprinting tools
like Nmap.

We gave a brief overview of Honeyd’s design and
implementation. Our evaluation shows that Honeyd
is effective in creating virtual routing topologies and
successfully fools fingerprinting tools.

Honeyd is freely available as source code and can
be downloaded from http://www.citi.umich.edu/u/
provos/honeyd/.

6 Acknowledgments

I would like to thank Dug Song, Jamie Van Rand-
wyk and Eric Thomas for helpful suggestions and con-
tributions. I also thank Therese Pasquesi and Jose
Nazario for careful reviews.

References

[1] Ofir Arkin and Fyodor Yarochkin. Xprobe v2.0: A
“Fuzzy” Approach to Remote Active Operating Sys-
tem Fingerprinting. http://www.xprobe2.org/, Au-
gust 2002. 1

[2] Steven M. Bellovin. Security problems in the TCP/IP
protocol suite. Computer Communications Review,
19:2:32–48, 1989. 4

[3] Smoot Carl-Mitchell and John S. Quarterman. Us-
ing ARP to Implement Transparent Subnet Gateways.
RFC 1027, October 1987. 2

[4] Fyodor. Remote OS Detection via TCP/IP
Stack Fingerprinting. http://www.nmap.org/nmap/

nmap-fingerprinting-article.html, October 1998.
1, 6

[5] Jon Postel. Transmission Control Protocol. RFC 793,
September 1981. 4

[6] Matthew Smart, G. Robert Malan, and Farnam Ja-
hanian. Defeating TCP/IP Stack Fingerprinting. In
Proceedings of the 9th USENIX Security Symposium,
August 2000. 6

[7] Lance Spitzner. Honeypots: Tracking Hackers. Addi-
son Wesley Professional, September 2002. 1

[8] Stuart Staniford, Vern Paxson, and Nicholas Weaver.
How to Own the Internet in your Spare Time. In Pro-
ceedings of the 11th USENIX Secuirty Symposium, Au-
gust 2002. 1

[9] W. R. Stevens. TCP/IP Illustrated, volume 1.
Addison-Wesley, 1994. 2

http://www.citi.umich.edu/u/provos/honeyd/
http://www.citi.umich.edu/u/provos/honeyd/
http://www.xprobe2.org/
http://www.nmap.org/nmap/nmap-fingerprinting-article.html
http://www.nmap.org/nmap/nmap-fingerprinting-article.html

[10] Michal Zalewski and William Stearns. Passive OS
Fingerprinting Tool. http://www.stearns.org/p0f/

README. Viewed on 12th January 2003. 6

http://www.stearns.org/p0f/README
http://www.stearns.org/p0f/README

	Introduction
	Design and Implementation
	Receiving Network Data
	Honeyd Architecture
	Routing Topology
	Personality Engine
	Configuration

	Evaluation
	Related Work
	Conclusion
	Acknowledgments

