
CITI Technical Report 04-01

Replication Control in Distributed File Systems

Jiaying Zhang
jiayingz@eecs.umich.edu

Peter Honeyman

honey@citi.umich.edu

ABSTRACT

We present a replication control protocol for distributed file systems that can guarantee strict consistency
or sequential consistency while imposing no performance overhead for normal reads. The protocol uses a
primary-copy scheme with server redirection when concurrent writes occur. It tolerates any number of
component omission and performance failures, even when these lead to network partition. Failure detec-
tion and recovery are driven by client accesses. No heartbeat messages or expensive group communication
services are required. We have implemented the protocol in NFSv4, the emerging Internet standard for
distributed filing.

April 1, 2004

Center for Information Technology Integration
University of Michigan

535 W. William St., Suite 3100
Ann Arbor, MI 48103-4978

 2

Replication Control in Distributed File Systems

Jiaying Zhang and Peter Honeyman
jiayingz@eecs.umich.edu honey@citi.umich.edu

1. Introduction

In modern distributed systems, replication receives

particular attention for improving performance and
availability: failure can be hidden from users and ap-
plications if they can obtain data services from an iden-
tical replica; replication can improve performance by
scaling the number of replicas with demand and by
offering nearby copies to services distributed over a
wide area.

A fundamental challenge with replication is to
maintain data consistency among replicas. In a repli-
cation system, the value of each logical item is stored
in one or more physical data items, referred to as its
copies. Each read or write operation on a logical data
item must be mapped to corresponding operations on
physical copies. Exactly when and how these map-
pings are carried out determines the consistency guar-
antees provided by the system and the cost of replica-
tion.

An ideal distributed file system provides applica-
tions strict consistency, i.e., a guarantee that all I/O
operations yield identical results at all nodes at all
times [2]. To enhance data availability, a replication
system must tolerate common component failures. To
reduce overhead due to replication, a replication con-
trol protocol should minimize the number of physical
accesses required to implement a logical access. In
practice, these three goals always conflict with each
other and the trade-offs among them need to be con-
sidered.

In this paper, we present a replication control proto-
col for distributed file systems that tolerates a large
class of failures, guarantees strict consistency, and
imposes little overhead on normal reads. We observe
that not all applications need strict consistency - Often,
ordered writes suffice, i.e., although applications do
not necessarily see updates simultaneously, they are
guaranteed to see them in the same order. Therefore,
our system also provides the support for this consis-
tency model in case of failures; as we shall see, it al-

lows applications to trade consistency for availability.
In the following discussion, we follow Lamport [17]
and refer to ordered writes as sequential consistency.

There are many examples of replication schemes in
distributed file and database systems. The work de-
scribed here is novel in the following ways.

First, our protocol uses a primary-copy with server
redirection scheme that offers strict or sequential con-
sistency without imposing any overhead on normal
reads.

Second, our design takes into account file system
workload characteristics to improve replication per-
formance. Distributed file systems typically encounter
workloads in which write sharing is rare. Furthermore,
when a file is opened for writing, there is usually a
burst of updates. Unlike the traditional primary-copy
[6] or two-phase locking [13] approaches, our system
dynamically binds a primary server when a client
opens a file for writing. This offers two benefits: first,
it provides superior read performance by allowing a
client to access data from a nearby replication server if
the referred file is not under modification. Second,
when a client modifies a file, only file open and close
operations require additional concurrency control mes-
sages for replication support.

Third, most recoverable systems detect failures with
periodic heartbeat or probing messages, inducing cost
to normal operations. In our system, failure detection
and recovery are driven by client access requests. No
heartbeat messages or expensive group communication
services are required.

Fourth, we have implemented the system as an ex-
tension to a standard Internet filing protocol, NFSv4
[9], which promise widespread acceptance and de-
ployment.

In the remainder of this paper, we describe the types
of failure that we anticipate in a distributed system.
Then we introduce our replication control protocol and
the recovery procedures in the case of failures. We use
a result from database theory to prove that our protocol
can guarantee sequential consistency. After that, we

 - 3 -

describe ways to support strict consistency and discuss
the related work.

2. Failure Models

A system fails if it does not adequately provide the

services for which it is designed. There is a well-
studied hierarchy of failures in distributed systems,
omission failure, performance failure, and Byzantine
failure [9].

Omission failure occurs when a component fails to
respond to a service request. Typical omission failures
include server crash or communication link outage.
Performance failure occurs when a system component
fails to respond to a service request within the time
limit specified for the delivery of that service. Occa-
sional message delays caused by overloaded servers or
network congestion are examples of performance
faults. In Byzantine failure, components act in arbi-
trary, even malicious ways. Compromised security can
lead to Byzantine failure.

An important subclass of omission and performance
failures is network partition. A partition is a collection
of connected servers and clients isolated from the rest
of the system.

Although security breach is increasingly common in
the Internet, Byzantine failure is beyond the scope of
our work. By implication, we rely on the distributed
file system to provide authorized communication. This
narrows our focus to two kinds of failure: crashed
nodes and partitioned networks. Furthermore, we as-
sume that even these failures are rare, although this
does not affect the security or correctness of our proto-
col. Rather, our goal is to develop a system that per-
forms well in the face of typical Internet conditions
and application requirements. In the next section, we
present the design of the replication control protocol.

3. Protocol Design

In a distributed file system, some nodes are servers

and some are clients. Clients send messages to servers
to request service; servers accept the messages, carry
out the requests, and return responses to the client. In
this paper, we focus on the replication control protocol
that guarantees consistency in the face of node and
network failure. The mechanisms for locating and
managing replicas, as well as implementation and per-
formance details, can be found in a companion paper
[7].

Our goal is to provide strict or sequential consis-
tency at little cost to exclusive or shared reads. To
realize this goal, we use a primary copy method with
server redirection when concurrent writes occur. The

strategy differs from the usual primary copy scheme in
that it allows late and dynamic binding of the primary
server, chosen at the granularity of a single file or di-
rectory. We present details in the following subsec-
tions.

3.1 File Updates

When a client opens a file for writing, the server it

selects temporarily becomes the primary for that file by
instructing all other replication servers to redirect fur-
ther client accesses for that file to it. When the file is
closed, the primary server withdraws from its role by
re-enabling replication on the other replication servers.

Two or more servers may try to become the primary
for a file at the same time. When these servers are in
the same partition, contention is always apparent to the
conflicting servers. We resolve the conflict by having
conflicting servers cooperate: the server that has dis-
abled more replicas is allowed to continue; the server
that has disabled fewer replicas quits the process; when
a tie happens, the server with bigger IP address is al-
lowed to proceed. If the conflicting servers are in dif-
ferent partitions, and neither of them can collect the
acknowledgements from a majority of the replicas, no
server can become the primary. We discuss this case
further in Section 4.5.

While replication is disabled, the primary server is
responsible for distributing updates to other replication
servers. Updates must be delivered in order, either by
including a serial number with the update or through a
reliable transport protocol such as TCP. In addition to
distributing the file data written by clients, each update
message from the primary server to other replication
servers also includes the metadata related to the up-
date, such as the modification time. Every replication
server stores the metadata accordingly after updating
the file data. As we show in Section 4.4, the stored
metadata help to identify the most recent copy of the
file during failure recovery. File modification with
two replication servers is illustrated in Figure 1.

3.2 Directory Updates

Directory modifications include creation, deletion,

and modification of entries in a directory. Unlike file
writes, little time elapses between the start and the fin-
ish of a directory update, which reduces the likelihood
of concurrent accesses to the directory while it is being
updated. So instead of redirecting access requests for
the directory while an update is in progress, replication
servers simply block these accesses until the primary
server distributes the update and re-enables replication.
Directory modification with two replication servers is
illustrated in Figure 2.

 - 4 -

Figure 1: File modification.
1. A client issues an open request to a server. 2. The
server instructs other replication servers to redirect re-
quests, making it the primary server for the file. 3. Rep-
lication servers acknowledge the request. 4. The primary
server acknowledges the open request. 5. The client
sends writes to the primary server. 6. The primary server
distributes the writes to other replicas. 7. Other servers
update the written file. 8. Other servers acknowledge the
update. 9. The primary server updates the written file.
10. The primary server acknowledges the client write
request. (Steps 5 through 10 may be repeated.) 11. The
client issues a close request. 12. The close request is
acknowledged. 13. The primary server instructs the
redirected servers to re-enable replication. 14. The redi-
rected servers disable redirection and acknowledge the
request to re-enable replication.

Figure 2: Directory modification.
1. A client issues a directory update request to a server.
2. The server instructs other replication servers to block
any access to this directory. 3. Replication servers ac-
knowledge the request. 4. The primary server distributes
the update request. 5. Other servers update the directory.
6. Other servers acknowledge the update. 7. The pri-
mary server processes the directory update request. 8.
The directory update request is acknowledged. 9. The
primary server instructs the other servers to re-enable
access. 10. The redirected servers restore access to the
directory and acknowledge the request to re-enable repli-
cation.

4. Failure Recovery

The principle challenge to data replication is main-

taining consistency in the face of failure. In this sec-
tion, we enumerate the failures that can occur and the
actions to take to maintain consistency.1 Using the
view change properties and rules proposed by El-
Abbadi et al. [1], we are able to prove that our protocol
guarantees sequential consistency. The proof and the
pseudo-code are given in the next section.

In our design, we assume an asynchronous commu-
nication network: there is no bound on the message
transmission delays between nodes. In such a network,
it is impossible for a node p to distinguish between a
failure of node q (crash failure) or a failure of the
communication network connecting p and q (partition
failure). Yet these two kinds of failure can have dif-
ferent effects on file system states: while a failed node
can not perform any operations, in a partitioned net-
work, if no control mechanisms are used, nodes in dif-
ferent partitions may operate on the same logical ob-
ject unwittingly, which leads to inconsistent system
states.

1 Failure recovery for directories is not discussed

in detail as it can be viewed as a special case of
file write.

To prevent data inconsistency, our protocol main-
tains an active view among replication servers and
allows updates only among the servers contained in the
active view. We refer to the server group covered by
the active view as active group. To ensure the unique-
ness of the active group, we follow Cristian and
Mishra [8] and define it to be one that contains a ma-
jority of the replication servers. In the remainder of
this section, we consider the different types of failure
and explain the failure recovery procedure for each
case.

4.1 Client Crash

Following the specification of NFSv4, each open

file is associated with a lease, subject to renewal by the
client. In the event of client failure, the primary server
receives no further renewals, so the lease expires.
Once the primary server decides that the client fails, it
closes each file opened on behalf of the failed client.
If the client is the only writer for a file, the primary
server re-enables replication for the file. Unsurpris-
ingly, the file content reflects all writes acknowledged
by the primary server prior to the failure.

4.2 Network Partition

To detect partition failures, every server keeps a ta-

ble that records the liveness of other replication servers
from its point of view. The set of live servers is called
the active view.

Network partition changes the primary server’s ac-
tive view. The partition is detected when the primary

 - 5 -

server disables replication, when it distributes updates
to other replication servers, or when it re-enables repli-
cation. We consider each case in turn.

4.2.1 Detect Partition while Disabling Replication

The primary server constructs its active view for the

file as it receives acknowledgements for disabling rep-
lication requests. As soon as the active view consti-
tutes a majority, the primary server acknowledges the
client open request. A replication server cannot be-
come the primary if it fails to collect acknowledge-
ments from a majority of the replication servers.
However, the client should impose a timeout on its
open request to avoid waiting forever.

4.2.2 Detect Partition during Update Distribution

The primary server forwards each client write re-
quest to the replication servers in its active view. The
primary server updates its local copy and acknowl-
edges the client request after it receives update ac-
knowledgements from a majority of the replication
servers. Any replica that fails to acknowledge an up-
date is removed from the active view.

If the active view shrinks to less than a majority
during processing a client write request, different situa-
tions may occur, as illustrated in Figure 3.1-3.3. Be-
cause the primary server can not determine the data
version in the majority partition, it fails the client write
request. Some replication servers may have applied
the update; consequently the file content is inconsistent
among replication servers. However, because replica-
tion is still disabled at these servers, and as we show in
Section 4.4, our failure recovery procedure guarantees
that the system converges in the majority partition be-

P (v1)

S3 (v2)

S4 (v2)

S2 (v1)

S5 (v1)

S6 (v1)

S7 (v1)

Figure 3.1

Network partition

P (v1)

S3 (v2)

S4 (v2)

S2 (v1)

S5 (v1)

S6 (v2)

S7 (v2)

Figure 3.2

Network partition

P (v1)

S3 (v2)

S4 (v2)

S2 (v2)

S5 (v2)

S6 (v2)

S7 (v2)

Figure 3.3

Network partition

P (v2)

S3 (v2)

S4 (v2)

S2 (v1)

S5 (v1)

S6 (v2)

S7 (v2)

Figure 3.4

Network partition

Figure 3: Possible situations after the primary server is partitioned in a minority partition.
This figure shows different situations that may occur after the primary server P is separated in a minority partition
during processing a client’s write request. S2 - S7 represent other replication servers. The value in parentheses
denotes the data version of the file copy at the corresponding replication server.

 - 6 -

fore re-enabling the replication, inconsistent data ac-
cesses are prevented.

Figure 3.4 shows a special situation, in which net-
work failure places the primary server in a minority
partition after it assembles a majority view for the cur-
rent update. As described previously, the primary
server updates its own copy and acknowledges the
write. At this time, there must be at least one fresh
copy of the file in the majority partition. In Section
4.4, we describe how that fresh copy is found and used
to update other replication servers to assure data con-
sistency after failure recovery.

4.2.3 Detect Partition while Re-enabling Replication

Partition that is detected when the primary server

processes a client close request does not affect data
consistency, as all replication servers in the active view
should have the same file contents. Therefore, the
primary server acknowledges a client close request
immediately. At the same time, it sends its active view
to other replication servers in the view, and re-enables
the replication on them. Any server outside the active
view may have stale data, so the servers that are re-
enabled replication refuse any later requests coming
from a server not in the active view. A failed replica
can be re-added to the active view only after it syn-
chronizes with the up-to-date copy.

4.3 Replication Server Crash

Replication server crash can be regarded as a spe-

cial case of network partition if we consider the
crashed server as a single partition. Therefore the
same handling procedure applies. When the primary
server detects a replication server failure during dis-
abling replication or distributing updates, it removes
the failed server from its active view. At the time of
re-enabling replication, the primary server sends its
active view to other live replication servers. These
servers refuse any latter requests from a server outside
the active view. A failed replica has to synchronize
itself with a live replication server before being re-
added into the active view.

4.4 Primary Server Failure Recovery

A client detects primary server failure (crash failure

or network partition that separates the primary server
in a minority partition) when an access request times
out. In this case, the client selects a live replication
server and informs it of the failure. After verifying the
primary server failure, the selected replacement works
with other replication servers to become the new pri-
mary, as follows.

The replacement first asks all other replication serv-
ers for permission to become the new primary and the
modification time of the file copy at each replica. The
failure may have occurred during replication disabling
stage; consequently some replication servers may not
have received the replication disabling requests from
the failed primary. In this case, these replicas simply
grant the replacement the authority to become the pri-
mary. If the request comes to a replica that has been
disabled replication, that server verifies the primary
server failure, switches the primary, and acknowledges
the request. We note that upon receiving a recovery
request, a replication server should first check the state
of the original primary server to avoid switching the
primary blindly under unusual network conditions; e.g.
network connections may not be transitive.

The replacement becomes the new primary if it re-
ceives the acknowledgements from a majority of the
replication servers. It then determines which replicas
have stale data by comparing the received modification
times and synchronizes these servers with the freshest
file copy, which it may first have to retrieve for itself.
Following that, the replacement primary constructs a
new active view, distributes it to other replication serv-
ers in the view, and re-enables their replication.

The replacement responds to the client after finish-
ing the recovery. The client then engages in the client-
side recovery mechanism for server migration, part of
the NFSv4 standard. In brief, this entails cleaning up
state associated with the old server, reopening the file
on a new server, and reissuing the failed request. If the
failed I/O is a write, it is indeterminate whether the
state of the recovered file reflects that write operation.
However, this does not compromise data consistency
as repeating a write request is safe in NFSv4.

Other clients may also detect the primary server
failure and initiate server recovery on different replica-
tion servers. If the recovery is not complete, the con-
flict is resolved through the same procedure as men-
tioned in Section 3.1. When replication is later re-
enabled, all such clients receive the acknowledgements
and engage in client-side recovery. If a client detects
the failure after the recovery is complete, it receives an
immediate response and starts client-side recovery.

4.5 No Majority Partition

As described above, the failure recovery procedure

starts when the primary server is isolated in a minority
partition. However, if there are multiple partitions and
no partition includes a majority of the replication serv-
ers, a new primary can not be elected until the parti-
tions heal sufficiently to allow a quorum to assemble.
In this case, read requests can be satisfied, but any
write requests are refused.

 - 7 -

5. Proof of Correctness

In databases, one-copy serializability requires that

the concurrent execution of transactions on replicated
data be equivalent to a serial execution on non-
replicated data [4]. In replicated file systems, sequen-
tial consistency is comparable to one-copy serializabil-
ity by viewing each file or directory operation as a
transaction. A file operation executes on a single ob-
ject, the accessed file, but a directory operation may
involve more than one object.

In this section, we prove that our replication control
protocol guarantees sequential consistency by demon-
strating that it obeys the view change properties and
rules of El. Abbadi et al. [1], which they show are suf-
ficient conditions for a replicated database to guarantee
one-copy serializability.

We introduce essential definitions, properties and
rules in Section 5.1. We present the pseudo code for
our protocol in Section 5.2 and prove correctness in
Section 5.3.

5.1 Background of View Change Protocol

In this subsection, we introduce the definitions and

the theorem proposed by El. Abbadi, et al. [1] for later
discussion.

Definitions

In a distributed system that consists of a finite set of
processors, a processor’s view is defined as its estimate
of the set of processors with which communication is
possible.

Let P be the set of processors, p a member of P, and
P the power set of P. The function view: P → P gives
the view of each processor p in P.

A virtual partition is a set of communicating proc-
essors that share a common view and a test for mem-
bership in the partition. We assume that at any time, a
processor is in at most one virtual partition.

Let V denote the set of all possible virtual parti-
tions. The instantaneous assignment of processors to
virtual partitions is given by the partial function vp: P
→ V. vp is undefined for p if p is not assigned to any
virtual partition.

The total function defview: P → {true, false} char-
acterizes the domain of vp, i.e., defview(p) is true if p
is currently assigned to some virtual partition, and is
false otherwise.

A function join(p, v) denotes the event where p
changes its local state to indicate that it is currently
assigned to v. Similarly, function depart(p, v) denotes

p changing its local state to indicate that it is no longer
assigned to v.

The function members: V → P yields for each vir-
tual partition v the set of processors that were at some
point in their past assigned to v.

El. Abbadi et al. decompose a replication manage-
ment algorithm into two parts: a replication control
protocol that translates each logical operation into one
or more physical operations, and a concurrency control
protocol that synchronizes the execution of physical
operations. Based on this decomposition, they present
three properties and five rules, and prove that any rep-
lication control protocol that satisfies these properties
and rules guarantees one-copy serializability when
combined with a concurrency control protocol that
ensures conflict-preserving serializability. Below we
describe them in turn.

Three Properties

(S1) View consistency
If defview(p) and defview(q) and vp(p)=vp(q), then

view(p)=view(q).
(S2) Reflexivity

If defview(p), then p ∈ view(p).
(S3) Serializability of virtual partitions

For any execution E produced by the replicated data
management protocol, the set of virtual partition iden-
tifiers occurring in E can be totally ordered by a rela-
tion << that satisfies the condition

if v << w and p ∈ (members(v) ∩ view(w)), then
depart(p, v) happens before join(q, w) for any q ∈
members(w).

This property states that p’s departure from v must
be visible to all the members of its new cohort in w.

Five Rules

(R1) Majority rule
A logical object L is accessible from a processor p

assigned to a virtual partition only if a majority of cop-
ies of L reside on processors in view(p).
(R2) Read rule

Processor p implements the logical read of L by
checking if L is accessible from it and, if so, sending a
physical read request to any processor q ∈ (view(p) ∩
copy(L)). (If q does not respond, then the physical
read can be retried at another processor or the logical
read can be aborted.)
(R3) Write rule

Processor p implements the logical write of L by
checking if L is accessible from it and, if so, sending
physical write requests to all processors q ∈ (view(p)
∩ copies(L)) which are accessible and have copies of
L. (If any physical write request can not be honored,
the logical write is aborted).

 - 8 -

(R4) Execution rule
All physical operations carried out on behalf of a

transaction t must be executed by processors of the
same virtual partition v. In this case we say that t exe-
cutes in v.
(R5) Partition initialization rule

Let p be a processor that has joined a new virtual
partition v, and let Lp be a copy of a logical object L
that is accessible in v. The first operation on Lp must be
either a write of Lp performed on behalf of a transac-
tion executing in v, or a recover(Lp) operation that
writes into Lp the most recent value of L written by a
transaction executing in some virtual partition u such
that u << v for any legal creation order <<.

CP-Serializability

Two physical operations conflict if they operate on
the same physical object and at least one of them is a
write.

An execution E of a set of transactions T is conflict-
preserving (CP) serializable if there exists an equiva-
lent serial execution ES of T that preserves the order of
execution of conflicting operations.

A concurrency control protocol ensures CP-
Serializability if it guarantees that the execution of any
set of transactions is conflict-preserving.

THEOREM

Let R be a replication control protocol obeying
properties Sl–S3 and rules Rl–R5, and let C be a con-
currency control protocol that ensures CP-
Serializability of physical operations. Any execution
of transactions produced by R and C is one-copy seri-
alizability. �

5.2 Protocol Pseudo Code

To demonstrate that our replication control protocol

satisfies the properties and rules described above, we
give an abstract implementation of the protocol below.
For simplicity, we assume a reliable underlying trans-
port protocol, such as TCP, among replication servers.
2

We specify that the view of a replica p for an object
L is undefined if the replication for L is disabled on p.
We assume each replication server has a unique identi-
fier at its creation time, e.g., its DNS name. A replica-
tion server denotes its unique identifier as myid. When
a replication server starts, its view for each object L is
initialized as the set of all the replicas holding a copy
of L, denoted as L.copies.

2 The assumption can be easily relaxed by including serial

numbers in exchanged messages.

The Boolean function enabled: L → {true, false} is
true on a replica p if the replication of object L on p is
enabled. On a replica p, the variable L.primary records
the primary server p admits for L, and the variable
L.view records p’s view for L when L is accessible on p.
On a replication server, function disable(L) disables the
replication of L, and function enable(L) enables the
replication of L, respectively.

When a server receives a write-open request from a
client, it calls the procedure ObjectDisable to disable
the replication of the file on other replicas. The server
becomes the primary after receiving the acknowl-
edgements from a majority of the replication servers.
The routine can fail either due to a network partition
that separates the server from the majority of the repli-
cas, or because there is a competing server that starts
ObjectDisable procedure for L simultaneously. In the
first case, the server simply keeps trying the process
and leaves the client to detect the failure with the re-
quest timing out. For the second case, we resolve the
conflict with the strategy described in Section 3.1 – the
server that disables a majority of the replicas contin-
ues; the server that disables fewer replicas quits the
procedure; when a tie happens, the server with bigger
identifier wins.

In the procedure’s pseudo code, the parameter δ in
line 6 is an upper bound on the message transmission
delay between any two replicas. For a subset A⊆P, the
function count(A) (line 10) returns the number of the
replicas in A. In line 21, the parameter ε is a random
value between [0, 2δ]. We have the server wait for the
duration of 2δ+ε if it fails to become the primary, al-
lowing the competitor to disable the replication during
this period. The purpose of waiting additional ε time
is to resolve extraordinary situations. For example, in
a conflict that involves more than two competing serv-
ers, having these servers restart the replication dis-
abling processes at different times reduces the likeli-
hood that they conflict again.

 - 9 -

procedure ObjectDisable(in L: L);

1 var A: set of P; T: Timer; p, q;

2 while [enabled(L)] do {
3 disable(L); L.contender←myid;
4 for each p ∈ L.view−{myid} do
5 send(p, “disable”, L, myid);
6 T.set(δ×2); A←{myid};
7 while [1] do {
8 select from
9 receive(“ok”, L, q) ⇒
10 A←A∪{q};
11 if [count(A)>count(L.copies)/2] or
[count(A)=count(L.copies)/2 and myid>L.contender]
then
12 L.primary←myid;
13 return true;
14 fi;
15 T.timeout ⇒
16 for each p ∈ A−{myid} do
17 send (p, “enable”, L, myid, ∅);
18 enable(L); wait(δ×2+ε);
19 break;
20 endselect;
21 };
22 };
23 return false;

The primary server calls the procedure ObjectWrite
to update the copies of L on other replication servers
when it receives a write request for L. In the pseudo
code, the variable mtime records the modification time
of L specified by the primary server. It is sent to other
replication servers along with the update data. Each
replica stores this time with its physical copy of L re-
spectively.

During ObjectWrite, the primary server is the only
replica whose view is defined. Therefore it can ac-
knowledge a client write request after a majority of the
replicas reply, instead of waiting for the acknowl-
edgements from all the replication servers in its view.
This is equal to say that after receiving the
acknowledgements from a majority of the replicas, the
primary server’s view becomes the set of all the replied
replicas; the view extends when the acknowledgements
from more replication servers are received.

procedure ObjectWrite(in L: L, value);

1 var A: set of P; p, q: P;
2 mtime: us (time in microsecond);

3 mtime←current-time; A←{myid};
4 for each p ∈ L.view−{myid} do
5 send(p, “update”, L, value, mtime, myid);
6 while [count(A)≤count(L.copies)/2] do {
7 select from
8 receive(“ok”, L, q) ⇒ A←A∪{q};
9 endselect;
10 };
11 update(L, value, mtime);
12 return;

When the client closes L after modification, the pri-
mary server calls the procedure ObjectEnable to enable
the replication for L on other replication servers. Ac-
cording to NFSv4, a client should not have any pend-
ing writes before issuing a close request. This implies
that at least a majority of the replication servers have
the fresh copy of L at this point. However, before re-
enabling the replication, the primary server should wait
for a period of time, allowing slow replication servers
to catch up, as well as constructing a complete active
view for L. For simplicity, we implement this process
with the primary server sending an empty update to
other replication servers.

The primary server distributes its view to other ac-
tive replicas when re-enabling replication. Each of
these replication servers stores the view with L respec-
tively. Any requests from a replica outside the view
are not allowed, until that replica obtains the fresh
copy of L and is re-added into the view.

procedure ObjectEnable(in L: L);

1 var A: set of P; T: Timer; p, q: P;

2 for each p ∈ L.view−{myid} do
3 send(p, “update”, L, ∅, L.mtime, myid);
4 T.set(δ×4); A←{myid};
5 while [A≠L.view] do {
6 select from
7 receive(“ok”, L, q) ⇒ A←A∪{q};
8 T.timeout ⇒
9 if count(A)>count(L.copies)/2 then
10 break;
11 fi;
12 endselect;
13 };
14 L.primary←∅; enable(L); L.view←A;
15 for each p ∈ L.view−{myid} do
16 send(p, “enable”, L, myid, L.view);
17 return;

 - 10 -

Based on the above procedures, we give the abstract
implementation for processing logical read, write-
open, write and write-close requests below. In the
procedure LogicalWriteOpen and LogicalWriteClose,
we use the variable L.count to record the number of
concurrent writers for L on the primary server. The
symbols “<” and “>” delimit critical sections that are
protected with a mutual exclusion lock. We note that
the wait function used in all the procedures automati-
cally releases the lock.

procedure LogicalRead(in L: L);

1 if enabled(L) or L.primary=myid then
2 serve client request;
3 else
4 redirect client to L.primary;
5 fi;

procedure LogicalWriteOpen(in L: L);

1 <if ∼enabled(L) and L.primary=myid then
2 L.count++; acknowledge client request;
3 else if ObjectDisable(L)=true then
4 L.count←1; acknowledge client request;
5 else if L.primary≠∅ then
6 redirect client to L.primary;
7 else
8 deny client request;
9 fi;
10 fi;
11 fi;>

procedure LogicalWrite(in L: L);

1 if enabled(L) or L.primary≠myid then
2 deny client request;
3 else
4 ObjectWrite(L);
5 acknowledge client request;
6 fi;

procedure LogicalWriteClose(in L: L);

1 <if enabled(L) or L.primary≠myid then
2 deny client request;
3 else
4 L.count−−; acknowledge client request;
5 if L.count=0 then
6 ObjectEnable(L);
7 if L.view≠L.copies then
8 schedule(Probe(L));
9 fi;
10 fi;
11 fi;>

Correctness does not require a failed server to rejoin
the active views from which it is excluded, but com-
mon sense argues that a repaired server should return
to service. Because a rejoining server does not know
what it has missed during partition, we charge the pri-
mary server with the responsibility of probing for the
return of any replication servers that are not in the ac-
tive view. The primary server performs this by sched-
uling the task Probe after re-enabling the replication
(line 8 in the procedure LogicalWriteClose).

When detecting a reconnection, the task Probe calls
the procedure AddMember to synchronize the return-
ing replica with the up-to-date copy and re-add that
replica to the active view. In the procedure, function
sync(l, source, target) represents the process that syn-
chronizes the copy of L on target with the copy of L on
source.

task Probe(in L: L);

1 var R: set of P; T: Timer; r, q: P;

2 R←L.copies−L.view;
3 while[R≠∅] do {
4 for each r ∈ R do
5 send(r, “probe”, myid);
6 T.set(δ×2);
7 while [1] do {
8 select from
9 receive(“ok”, L, q) ⇒
10 AddMember(L, q); reset(T);
11 T.timeout ⇒ break;
12 endselect;
13 };
14 R←L.copies−L.view;
15 };
16 exit task;

procedure AddMember(in L: L, add-id: P)

1 <if ObjectDisable(L)=true then
2 sync(L, myid, add-id);
3 L.view←L.view∪{add-id};
4 ObjectEnable(L);
5 fi;>

If the primary server fails, a connected client can
detect the failure when its request times out. At this
time, the client appeals another replication server to
recover the failure, which triggers the procedure Re-
cover on the selected replacement. If the server suc-
ceeds in collecting the acknowledgements from a ma-
jority of the replication servers, it brings all accessible
copies up-to-date, forms a new view and distributes it
to the acknowledged replicas. After that, it replies to

 - 11 -

the client request and starts the task Probe to detect the
return of the failed replicas.

procedure Recover(in L: L, primary: P)

1 var A: set of P; T: Timer; p, q, sync-id: P;
2 newest: µs (time in microsecond);

3 if Alive(primary) then
4 deny client request; return;
5 fi;
6 if primary∉L.view then
7 acknowledge client request; return;
8 fi;
9 <if enabled(L) then
10 disable(L); L.primary←primary;
11 fi;>
12 while [∼enabled(L)] do {
13 <if L.primary≠primary then
14 wait(δ×2); continue;
15 else
16 L.primary←myid; L.contender←myid;
17 fi;>
18 for each p ∈ L.view−{myid} do
19 send(p, “recover”, L, myid);
20 T.set(δ×2); A←{myid};
21 newest←L.mtime; sync-id←myid;
22 while [1] do {
23 select from
24 receive(“ok”, L, mtimeq, q) ⇒
25 A←A∪{q};
26 if mtimeq>newest then
27 newest←mtimeq; sync-id←q;
28 fi;
29 T.timeout ⇒ break;
30 endselect;
31 };
32 if count(A)>count(L.copies)/2 or [count(A)=
count(L.copies)/2 and myid>L.contender] then
33 if sync-id≠myid then
34 sync(L, sync-id, myid);
35 fi;
36 for each p ∈ A−{myid} do
37 sync(L, myid, p);
38 L.view←A; enable(L);
39 for each p ∈ A−{myid} do
40 send (p, “enable”, L, myid, L.view);
41 schedule(Probe(L));
42 else
43 for each p ∈ A−{myid} do
44 send (p, “enable”, L, myid, ∅);
45 L.primary←primary; wait(δ×2+ε);
46 fi;
47 };
48 acknowledge client request; return;

The task Monitor runs on every replication server
and is responsible for generating responses to the re-
quests from other replicas. In line 29, the replication
server calls the procedure Alive to check the state of
the original primary server upon receiving a recovery
request, so that it does not switch primary blindly un-
der unusual network conditions; e.g. network connec-
tions may not be transitive.

1 task Monitor;

2 var view: set of P; T: Timer; p: P; L: L;
3 mtime: us (time in microsecond);

4 while[1] do {
5 select from
6 receive(“disable”, L, p) ⇒
7 if p∉L.view then continue; fi;
8 <if enabled(L) then
9 disable(L); L.primary←p;
10 send(p, “ok”, myid, L);
11 else if p<L.contender then
12 L.contender←p;
13 fi;
14 fi;>
15 receive(“update”, L, val, mtime, p) ⇒
16 if ∼enabled(L) and L.primary=p then
17 update(L, val, mtime);
18 send(p, “ok”, myid, L);
19 fi;
20 receive(“enable”, L, p, view) ⇒
21 <if ∼enabled(L) and L.primary=p then
22 enable(L); L.primary←∅;
23 if view≠∅ then L.view←view; fi;
24 send(p, “ok”, myid, L);
25 fi;>
26 receive(“probe”, p) ⇒ send(p, “ok”, myid);
27 receive(“recover”, L, p) ⇒
28 if p∉L.view then continue; fi;
29 <if ∼Alive(L.primary) then
30 if enabled(L) then disable(L); fi;
31 L.primary←p;
32 send(p, “ok”, myid, L, L.mtime);
33 else if p<L.contender then
34 L.contender←p;
35 fi;
36 fi;>
37 receive(“remove”, D, L, mtime, p) ⇒
38 <if ∼enabled(D) and D.primary=p and
∼enabled(L) and L.primary=p then
39 remove(D, L, mtime);
40 send(p, “ok”, myid, D);
41 fi;>
42 endselect;
43 };

 - 12 -

procedure Alive(check-id: P);

1 var T: Timer;

2 if check-id=myid then return true; fi;
3 if check-id=∅ then return false; fi;
4 send(check-id, “probe”, myid);
5 T.set(δ×2);
6 while [1] do {
7 select from
8 receive(“ok”, check-id) ⇒ return true;
9 T.timeout ⇒ return false;
10 endselect;
11 };

Next we give the entry remove procedure as an ex-
ample for directory modifications. Unlike file writes, a
directory modification can involve more than one ob-
ject. We disable the replications for all the involved
objects before performing a directory update. In the
procedure, D represents the parent directory of L that is
to be removed. We show the replication disabling for
the two objects as separate operations. In the real im-
plementation, these requests are sent in one message.

procedure LogicalRemove(in D, L: L);

1 var A: set of P; T: Timer; p, q: P;
2 mtime: us (time in microsecond);

3 while [∼ObjectDisable(D) or ∼ObjectDisable(L)]
do
4 {};
5 mtime←current-time;
6 for each p ∈ D.view−{myid} do
7 send(p, “remove”, D, L, mtime, myid);
8 T.set(δ×2); A←{myid};
9 while [A≠D.view] do {
10 select from
11 receive(“ok”, D, q) ⇒
12 A←A∪{q};
13 if count(A)>count(D.copies)/2 then
14 remove(D, L, mtime);
15 acknowledge client;
16 fi;
17 T.timeout ⇒
18 if count(A)>count(D.copies)/2 then
19 break;
20 fi;
21 endselect;
22 };
23 D.primary←∅; enable(D); D.view←A;
24 for each p ∈ D.view−{myid} do
25 send(p, “enable”, D, myid, D.view);
26 if D.view≠D.copies then schedule(Probe(D)); fi;
27 return;

5.3 Correctness Proof

To prove that our protocol guarantees sequential

consistency, we show that it satisfies properties S1–S3,
rules R1–R5, and CP-Serializability.

First, the use of a single replica, the primary server,
to determine the view of a majority partition ensures
S1. Second, the primary server distributes its view
only to the replicas included in the active view, so S2
is guaranteed. Third, every replica departs from its old
virtual partition (disable replication) before forming a
new partition (obtain a new view and enable replica-
tion), which ensures S3.

To see that R1 is satisfied, we observe that an ob-
ject L can be accessed on a server p only if the replica-
tion of L is enabled on p or if p is the primary server
for L. In both cases, the view of p contains a majority
of the replication servers.

In our system, a logical read of object L is per-
formed either by reading the physical copy at the con-
nected server p when L is accessible on p, or by read-
ing the copy at the primary server if replication is dis-
abled on p. Property S2 then gives us rule R2.

Rule R3, the write rule, follows with similar reason-
ing. L is writable at p only if p holds a copy of L and p
is the primary server for L. p then sends the update to
all the replication servers in view(p).

Rule R4 is automatically satisfied since a file or di-
rectory operation is executed atomically in file sys-
tems.

Rule 5 says that before copy lp can be read in a par-
tition v, it must contain the most recent value assigned
to L. The rule is satisfied in our protocol by requiring
each replica to synchronize with the up-to-date copy
before being added to the active view (procedure Add-
Member) or forming a new view (procedure Recover).

Finally, in our protocol, CP-Serializability is en-
sured by requiring all access requests to be served
from the primary server when concurrent writes occur.
�

6. Discussion

As described previously, each replication server

stores an active view for every replicated object, which
incurs substantial storage overhead. Given our as-
sumption about the relative frequency of failure, it is
more efficient to store the complement of an active
view on each replication server. In our implementa-
tion, we record the complement of an active view in
NFSv4 extended attributes, if it is nonempty.

So far, the presented algorithm is sufficient to guar-
antee sequential consistency. However, when partition
occurs, a read operation in a minority partition may

 - 13 -

return stale data. Such a situation does not compro-
mise the system state, but it can lead to a loss of exter-
nal consistency [9], i.e. the ordering of operations in-
side the system does not agree with the order that an
application expects. If sequential consistency is too
weak a guarantee for an application, strict consistency
that guarantees both one-copy serializability and exter-
nal consistency is required. Our protocol supports this
requirement by disabling data updates everywhere
when a failure occurs. We are aware that other meth-
ods exist to support strict consistency. For example,
replication servers can exchange periodic heartbeat
messages to detect partitions and bound the staleness
of data, or a reader can check a specified number of
replication servers to ensure that it accesses the fresh
copy of data. Compared with these methods, our strat-
egy allows less availability for write operations in the
case of failure. However, it has two dominant advan-
tages: first, it does not affect read performance, which
we believe is critical for a file system to be really use-
ful; second, it adds no overhead or network traffic to
normal operations.

7. Related Work

A lot of research has been undertaken on replication

control in distributed systems. Our replica control
protocol shares many features with the previous work
in this area. Specially, our protocol can be regarded as
an extension of the primary copy method [6] and a
special implementation of the view change protocol in
distributed file systems.

Echo [10] and Harp [5] are file systems that use the
primary copy scheme to support mutable replication.
In these systems, replication is used only to increase
data availability; potential performance benefits from
replication are not targeted. Both of these systems use
pre-determined primary server for a collection of disks,
a potential bottleneck if those disks contain hot spots
or if the primary server is located remotely from cli-
ents. In our system, we avoid this problem by allow-
ing dynamic determination of a primary server, chosen
at the granularity of a single file or directory. We use
replication to improve performance, as well as avail-
ability. A client can choose a nearby or lightly loaded
replication server to access data, and switch to a work-
ing replication server if the originally selected server
fails.

El-Abbadi et al. first proposed a view change proto-
col in the context of transactional replication systems
[1]. Our failure detection and recovery scheme can be
regarded as a special implementation of a view change
protocol in distributed file systems, with two novelties.
First, in our protocol, failure detection and recovery
are driven by client accesses. This eliminates the need

for periodic heartbeat messages or special group com-
munication services. Second, by taking advantage of
the features provided by our primary-copy scheme,
when the system is free of failure, our view change
protocol is totally embedded into the concurrency con-
trol messages (replication enabling messages and rep-
lication disabling messages). This helps to reduce the
network traffic in normal operations.

Recent years have seen a lot of work in peer-to-peer
(P2P) file systems, including OceanStore [15], Ivy
[16], Pangaea [19] and Farsite [20]. These systems
address the design of systems in untrusted, highly dy-
namic environments. Consequently, reliability and
continuous data availability are usually critical goals in
these systems, but performance or data consistency are
often sacrificed. Compared to these systems, our sys-
tem addresses data replication among file system serv-
ers, which are more reliable but have more stringent
requirements on average I/O performance. This leads
to different design strategies in our approach.

8. Conclusion

This paper presents a replication control protocol

for distributed file systems that supports strict consis-
tency or sequential consistency, even in partition fail-
ures. In the protocol, failure detection and recovery
are driven by client accesses. No heartbeat messages
or expensive group communication services are re-
quired. The protocol imposes a small performance
penalty on writes, and no overhead on reads. It is well
suited for enterprise computing environments in which
reads outnumber writes and failures are rare.

9. References
[1] A. E1 Abbadi, D. Skeen, and F. Cristian, “An Efficient
Fault-tolerant Protocol for Replicated Data Management”,
Proc. Of 5th ACM SIGACTSIGMOD, pp. 215-229, (1985).

[2] P. Bernstein and N. Goodman, “The failure and recovery
problem for replicated distributed databases”, ACM TODS,
(Dec. 1984).

[3] F. Cristian, H. Aghali, R. Strong and D. Dolev, “Atomic
Broadcast: From Simple Message Diffusion to Byzantine
Agreement”, Proc. Of 15th FTCS, pp.200-206, (June 1985).

[4] S.B. Davidson, H. GarciaMolina and D. Skeen, “Consis-
tency in Partitioned Networks”, ACM Computing Surveys
17(31) (1985).

[5] B. Likov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira,
and M. Williams, “Replication in the Harp File System”,
Proc. of 13th SOSP, Pacific Grove, (Oct. 1991).

 - 14 -

[6] P. Alsberg and J. Day, “A Principle for Resilient Sharing
of Distributed Resources”, Proc. of 2nd International Confer-
ence on Software Engineering, pp. 627-644, (Oct. 1976).

[7] J. Zhang and P. Honeyman, “Naming, Migration, and
Replication in NFSv4”, Tech. Report, CITI, University of
Michigan, (2003).

[8] F. Cristian and S. Mishra, “Automatic service availability
management in asynchronous distributed systems”, Proc. of
2nd International Workshop on Configurable Distributed
Systems, Pittsburgh, PA, (Mar 1994).

[9] Sun Microsystems, Inc., “NFS Version 4 Protocol”, RFC
3010 (Dec. 2000).

[10] A. Hisgen, A. Birrel, T. Mann, M. Schroeder, and G.
Swart, “Granularity and Semantic Level of Replication in the
Echo Distributed File System”, Proc. Of Workshop on Man-
agement of Replicated Data, Houston (Nov. 1990).

[11] M. Pease, R. Shostak, and L. Lamport, “Reaching
agreement in the presence of faults”, Journal of ACM, 27
(April 1980).

[12] L. Lamport, R. Shostak, and M. Pease, “The Byzantine
Generals Problem”, ACM Trans. on Prog. Lang. and Systems
4(3) (July 1982).

[13] P.A. Bernstein and N. Goodman, “Concurrency control
in distributed database systems”, ACM Computing Surveys.
13(2). (1981).

[14] J.N. Gray, “The Transaction Concept: Virtues and Limi-
tations”, Proc. Of 7th VLDB, pp. 144-154, (1981).

[15] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao,
and J. Kubiatowicz, “Pond: the OceanStore Prototype”, Proc.
Of 2nd USENIX FAST. (Mar. 2003).

[16] A. Muthitacharoen, R. Morris, T.M. Gil, and B. Chen,
“Ivy: A Read/Write Peer-to-peer File System”, Proc. Of 5th
OSDI, Boston (Dec. 2002).

[17] L. Lamport, “How to make a Multiprocessor Computer
that Correctly Executes Multiprocess Programs”, IEEE
Trans. on Computers, C-28(9):690-691, (Sep. 1979).

[18] D.K. Gifford, “Information Storage in a Decentralized
Computer System”, Tech Report CSL-81-8, Xerox Corpora-
tion, (Mar. 1983).

 [19] Y. Saito, C. Karamonolis, M. Karlsson, and M. Mahal-
ingam, “Taming aggressive replication in the Pangaea wide-
area file system”, Proc .of 5th OSDI, (Dec. 2002).

[20] A. Adya, W.J. Bolosky, M. Castro, R. Chaiken, G. Cer-
mak, J.R. Douceur, J. Howell, J.R. Lorch, M. Theimer, R.P.
Wattenhofer, “FARSITE: Federated, Available, and Reliable
Storage for an Incompletely Trusted Environment”, Proc. Of
5th OSDI, (Dec. 2002).

