
Project Status

NFSv4 Extensions for Performance and Interoperability

Center for Information Technology Integration

This is a report on the status of CITI’s EMC-funded pNFS development project as of September 4, 2008. Items
marked in blue reflect change from the June 19, 2008 report.

Sessions in the generic Linux pNFS client

Task Description Status

S1 Session recovery. This task is complete.

S2 Callback channel. This task is complete.

S3
NFSv4.1 back channel security
using machine credentials.

To provide for back channel security, we added support for machine
credentials in the SETCLIENTID call. This makes it possible for the
callback client to establish a secure channel to the corresponding
principal on the callback server. Patches were committed to Linux
2.6.26-rc1.

Now we are working on extending the RPC upcall mechanism so
that the callback client can acquire appropriate credentials from gssd.
Patches were posted to the linux-nfs mailing list and are under
discussion.

S4 NFSv4.1 back channel security
using secret state verifiers.

No progress to report

Other generic pNFS client issues

Task Description Status

C1
LAYOUTGET,
LAYOUTRETURN, and
CB_LAYOUTRECALL.

LAYOUTGET and LAYOUTRETURN are complete.

We have a general framework and an untested draft implementation
of CB_LAYOUTRECALL, with testing still to come.

C2
CB_RECALL_ANY,
RECLAIM_COMPLETE, and
CB_RECALLABLE_OBJ_AVAIL.

No progress to report. (So far, the NFSv4.1 development community
is deferring work on these non-critical elements.)

C3 Integration of block layout
requirements into generic client.

This task is under way and ongoing. The main pNFS branch now
includes appropriate hooks for the block driver in the write path.

C4
Implement new NFSv4.1 draft
19–21 pNFS features and
behavior.

Layout stateid is under active development in the NFSv4.1
development community, with Andy Adamson (NetApp) leading the
way. See Appendix for status.

Device notification is under active development in the pNFS
development community, with Marc Eshel (IBM) leading the
development activity. Draft rewrites have simplified this task
considerably by eliminating the ADD operation. XDR formats have
been worked out and we have an initial implementation of the
generic client and server processing code.

C5 Reboot recovery. This task is nearly complete.

Block layout module

Task Description Status

B1 Rebase the implementation from
block draft 3 to block draft 6.

We have rebased to draft 9.

B2
Extend the block layout
implementation to support large
server block sizes.

This task is complete.

B3
Block layout client
implementation based on
architectural review.

Based on the architectural review, we need to move disk scanning
out of the kernel and into user space. Tang Haiying is working on
this task.

B4

Support for complex volume
topologies using the Linux device
mapper (dm) needs to be
reviewed to meet performance
and quality requirements.

We have a working implementation that needs further testing. When
we return to task B3, we will revisit this implementation.

B5
Extend the layout cache
implementation to support at
least two devices.

We have a working implementation that needs further testing. When
we return to task B3, we will update this implementation.

B6

Extend the device mapper to
support the asynchronous
CB_NOTIFY_DEVICEID callback
operation.

No progress to report.

Block-specific device notification depends on generic device
notification (Task C4). We will begin work on this task soon.

B7

The block layout client must
implement a timed lease I/O
fencing mechanism to insulate
against network partition.

No progress to report

PyNFS

Task Description Status

P1
Update PyNFS client and server
to support new protocol features
in the latest drafts.

The PyNFS client and server now support the latest drafts
(minorversion1 draft 23 and pnfs-block draft 9).

P2
Enhance the block server
implementation to pass full
Connectathon tests.

The PyNFS server passes all Connectathon NFSv4 and non-pNFS
NFSv4.1 tests except for the large file test. We now have a
prototype implementation of a “real” file system that supports read,
write, and file creation.

– 2 –

Milestone summary

The following tasks were projected to be complete by the May 2008 Connectathon.

Task Description Status

S1 Session recovery Complete

S2 Callback channel implementation Complete

B1 Block layout draft 6 Complete

B2 Server block sizes greater then 4 KB Complete

B3 Revisit block layout client implementation based on architectural review Under way

The following tasks are projected to be complete by the Fall 2008 Bakeathon.

Task Description Status

S3 Back channel security using machine credentials No progress

C1 LAYOUTGET, LAYOUTRETURN, and CB_LAYOUTRECALL Nearly complete

C2 CB_RECALL_ANY, RECLAIM_COMPLETE, CB_RECALLABLE_OBJ_AVAIL No progress

P1 PyNFS block client and server support latest drafts Complete

P2 PyNFS block server passes full Connectathon tests, prototype file system. Nearly complete

The following tasks are projected to be under way by the Fall 2008 Bakeathon.

Task Description Status

C3 Integration of block layout requirements into the generic client Under way

C4 Draft 19–21 pNFS features and behavior. See Appendix for status. Under way

B4 Complex volume topologies Testing

B5 Copy-on-write Testing

The remaining tasks are projected to be complete by the end of the project.

Task Description Status

S4 NFSv4.1 back channel security using secret state verifiers No progress

C5 Reboot recovery Nearly complete

B6 CB_NOTIFY_DEVICEID No progress

B7 Timed lease I/O fencing mechanism No progress

– 3 –

Appendix: Notes on reboot recovery and layout stateid

Andy Adamson (NetApp), who leads the generic pNFS development, provides the following status information.

• Session recovery, clientid recovery, and session sync / async error recovery, and network partition recovery are
functional in the Linux generic NFSv4.1 implementation.

• SEQUENCE operation status reply, the TEST_STATEID operation, the FREE_STATEID operation, and the
RECLAIM_COMPLETE operations are not yet supported.

• The pNFS client responds to all SEQUENCE operation errors by destroying the session and creating a new
one.

• Metadata server / data server reboot recovery is being tested.
• NFSv4.1 and pNFS reboot recovery are expected to be functioning in time for interoperability testing at the

Austin Bake-a-thon.
• The following tables indicate the status of layout stateid in the Linux generic pNFS implementation. Testing

indicates compatibility with the Solaris implementation.

Server issues

Reference Narrative Status

§12.5.2 ¶2

When a client has no layout on a file, it MUST present a stateid as returned by
OPEN, a delegation stateid, or a byte-range lock stateid in the loga_stateid
argument.

The first successful LAYOUTGET processed by the server using a non-layout
stateid as an argument MUST have the "seqid" field of the layout stateid in the
response set to one.

Thereafter … the "seqid" MUST NOT be set to zero.

Complete

§12.5.3 ¶1

Once a layout stateid is changed, the "other" field will stay constant unless the
stateid is revoked, or the client returns all layouts on the file and the server
disposes of the stateid.

After the layout stateid is established, the server increments by one the value of
the "seqid" in each subsequent LAYOUTGET and LAYOUTRETURN response, and
in each CB_LAYOUTRECALL request.

Complete

§12.5.3 ¶5
Once a client has no more layouts on a file, the layout stateid is no longer valid,
and MUST NOT be used. Any attempt to use such a layout stateid will result in
NFS4ERR_BAD_STATEID.

Complete

§12.5.5.2 It is the server's responsibility to avoid inconsistencies regarding the layouts
provided.

In test

§12.5.5.2.1.1 ¶3

It is permissible for the client to use the current stateid for LAYOUTGET
operations for example when compounding LAYOUTGETs or compounding
OPEN and LAYOUTGETs. It is also permissible to use the current stateid when
compounding LAYOUTRETURNs.

Incomplete

§12.5.5.2.1.1 ¶4
It is permissible for the client to use the current stateid when combining
LAYOUTRETURN and LAYOUTGET operations for the same file in the same
COMPOUND request since the server MUST process these in order.

Incomplete

– 4 –

Reference Narrative Status

§12.5.5.2.1.3

1. The client sent the LAYOUTGET before processing the CB_LAYOUTRECALL.
The "seqid" in the layout stateid of LAYOUTGET is two less than the "seqid" in
CB_LAYOUTRECALL. The server returns NFS4ERR_RECALLCONFLICT to the
client, which indicates to the client that there is a pending recall.

2. The client sent the LAYOUTGET after processing the CB_LAYOUTRECALL,
but the LAYOUTGET arrived before the LAYOUTRETURN and the response to
CB_LAYOUTRECALL that completed that processing. The "seqid" in the layout
stateid of LAYOUTGET is equal to or greater than that of the "seqid" in
CB_LAYOUTRECALL. The server has not received a response to the
CB_LAYOUTRECALL, so it returns NFS4ERR_RECALLCONFLICT.

3. The client sent the LAYOUTGET after processing the CB_LAYOUTRECALL,
the server received the CB_LAYOUTRECALL response, but the LAYOUTGET
arrived before the LAYOUTRETURN that completed that processing. The "seqid"
in the layout stateid of LAYOUTGET is equal to that of the "seqid" in
CB_LAYOUTRECALL. The server has received a response to the
CB_LAYOUTRECALL, so it returns NFS4ERR_RETURNCONFLICT.

Incomplete

Client issues

Reference Narrative Status

§12.5.2 ¶2
When a client has no layout on a file, it MUST present a stateid as returned by
OPEN, a delegation stateid, or a byte-range lock stateid in the loga_stateid
argument.

Complete

§12.5.3 ¶2

The "seqid" value is used by the client to properly sort responses to
LAYOUTGET and LAYOUTRETURN.

The "seqid" is also used to prevent race conditions between LAYOUTGET and
CB_LAYOUTRECALL.

Incomplete

§12.5.3 ¶3

Once the client receives a layout stateid, it MUST use the correct "seqid" for
subsequent LAYOUTGET or LAYOUTRETURN operations. The correct "seqid"
is defined as the highest "seqid" value from responses of fully processed
LAYOUTGET or LAYOUTRETURN operations or arguments of a fully processed
CB_LAYOUTRECALL operation.

In progress

§12.5.3 ¶3 In the case of overlapping layout ranges, the ordering information will provide the
client the knowledge of which layout ranges are held.

Incomplete

§12.5.3 ¶4

LAYOUTGET results may be processed in parallel. LAYOUTRETURN results
may be processed in parallel. LAYOUTGET and LAYOUTRETURN responses
may be processed in parallel as long as the ranges do not overlap.

CB_LAYOUTRECALL request processing MUST be processed in "seqid" order at
all times.

Incomplete

§12.5.3 ¶4

For LAYOUTGET results, if the client is not using the forgetful model, it MUST
first update its record of what ranges of the file's layout it has before using the
seqid.

For LAYOUTRETURN results, the client MUST delete the range from its record
of what ranges of the file's layout it had before using the seqid.

Complete

§12.5.3 ¶4 For CB_LAYOUTRECALL arguments, the client MUST send a response to the
recall before using the seqid.

Depends on
§12.5.5.2.1.1

– 5 –

Reference Narrative Status

§12.5.5.2.1 ¶1

A client MUST NOT process a CB_LAYOUTRECALL that implies one or more
outstanding LAYOUTGET or LAYOUTRETURN operations to which the client
has not yet received a reply. The client MUST wait before processing such a
CB_LAYOUTRECALL until it processes all replies for outstanding LAYOUTGET
and LAYOUTRETURN operations for the corresponding file with seqid less than
the seqid given by CB_LAYOUTRECALL.

Incomplete

§12.5.5.2.1.1 ¶2
It is permissible for the client to send in parallel multiple LAYOUTGET
operations for the same file or multiple LAYOUTRETURN operations for the
same file, and a mix of both.

Complete

§12.5.5.2.1.1 ¶4

It is permissible for the client to use the current stateid when combining
LAYOUTRETURN and LAYOUTGET operations for the same file in the same
COMPOUND request since the server MUST process these in order. However,
if a client does send such COMPOUND requests, it MUST NOT have more than
one outstanding for the same file at the same time and MUST NOT have other
LAYOUTGET or LAYOUTRETURN operations outstanding at the same time for
that same file.

Incomplete

§12.5.5.2.1.2

1. The server processed the LAYOUTGET before issuing the recall, so the
LAYOUTGET must be waited for because it may be carrying layout information
that will need to be returned to deal with the CB_LAYOUTRECALL. The client
knows it needs to wait for the LAYOUTGET response before processing the
recall (or the client can return NFS4ERR_DELAY).

2. The server sent the callback before receiving the LAYOUTGET. The server will
not respond to the LAYOUTGET until the CB_LAYOUTRECALL is processed.

Incomplete

– 6 –

